
How the FreeBSD Project Works

Robert N. M. Watson
rwatson@FreeBSD.org

FreeBSD Project

Computer Laboratory
University of Cambridge

1 Introduction

FreeBSD is a widely deployed open source operating
system. [3] Found throughout the industry, FreeBSD
is the operating system of choice for many appli-
ance products, embedded devices, as a foundation OS
for several mainstream commercial operating systems,
and as a basis for academic research. This is distinct,
however, from the FreeBSD Project, which is a com-
munity of open source developers and users. This pa-
per discusses the structure of the FreeBSD Project as
an organization that produces, maintains, supports, and
uses the FreeBSD Operating System. As this commu-
nity is extremely large, I approach this from the per-
spective of a FreeBSD developer. This necessarily cap-
tures the project from my perspective, but having had
the opportunity to discuss the FreeBSD Project exten-
sively with many people inside and outside the com-
munity, I hope it is also more generally applicable.

2 Introduction to FreeBSD

FreeBSD is an open source BSD UNIX operating sys-
tem, consisting of a kernel, user space environment,
extensive documentation, and a large number of bun-
dled third party applications. It is widely used as an
ISP server platform, including at well-known providers
such as Yahoo!, Verio, New York Internet, ISC, De-
mon, and Pair. It is also widely used in part or in
whole for appliances and embedded devices, includ-
ing Juniper’s JunOS, Nokia’s IPSO, and for commer-
cial operating system products, such as VXWorks and
Mac OS X. The product of one of the most successful
open source projects in the world, FreeBSD develop-
ment work has focused on the areas of storage, net-
working, security, scalability, hardware support, and
application portability.

The highly active FreeBSD development commu-
nity centers on services offered via FreeBSD.org,
which include four CVS repositories and a Perforce
repository. These represent the life-blood of the devel-
opment and documentation work of the Project. There
are over 300 active developers working in CVS, which

hosts the official development trees for the base source
code, Ports Collection, projects tree, and documenta-
tion project. Significant project work also takes place
in Perforce, which supports a heavily branched concur-
rent development model as well as guest accounts and
external projects.

Another defining feature of the FreeBSD Project is
its use of the liberal Berkeley open source license.
Among features of the license are is remarkable sim-
plicity (the license can be fully displayed in an 80x24
terminal window) and its ability to support derived
works that are closed source, key to commercial and
research adoption of FreeBSD.

3 What do you get with FreeBSD?

FreeBSD is a complete, integrated UNIX system. The
core of FreeBSD is a portable multi-processing, multi-
threaded kernel able to run on a variety of hardware
platforms including Intel/AMD 32-bit and 64-bit pro-
cessors, Intel’s Itanium platform, and Sun’s UltraSparc
platform. FreeBSD is also able to run on several em-
bedded platforms based on i386, ARM, and PowerPC;
a MIPS port is also underway.

FreeBSD implements a variety of application pro-
gramming interfaces (APIs) including the POSIX
and Berkeley Sockets APIs, as well as providing a
full UNIX command line and scripting environment.
The FreeBSD network stack supports IPv4, IPv6,
IPX/SPX, EtherTalk, IPSEC, ATM, Bluetooth, 802.11,
with forthcoming support for SCTP. Security features
include access control lists (ACLs), mandatory access
control (MAC), security event auditing, pluggable au-
thentication modules (PAM), and a variety of cryp-
tographic services. FreeBSD ships with both work-
station/server and embedded development targets, and
comes with extensive user and programmer documen-
tation.

FreeBSD also ships with ports of over 16,000 third
party open- and closed-source software packages, pro-
viding programming and user interfaces such as X11,
KDE, Gnome, OpenOffice, and server software such
as Java, MySQL, PostgreSQL, and Apache.



4 The FreeBSD Project

The FreeBSD Project’s success can be measured
by the extremely wide deployment of FreeBSD-
based systems. From root name servers to major
web hosts, search engines, and routing infrastruc-
ture, FreeBSD may be found at most major service
providers. FreeBSD is also the foundation for a num-
ber of commercial operating systems. The FreeBSD
Project is more than just software, or even software
development: it includes a global community of de-
velopers, port maintainers, advocates, and an exten-
sive user community. Central to this community are
the FreeBSD.org web site, FTP site, CVS repository,
and mailing lists.

Several papers and studies have been written on the
topic of the FreeBSD Project and its development pro-
cess, including a papers by Richards [7], Jorgensen [4],
and Dinh-Trong [1].

5 The FreeBSD Foundation

The FreeBSD Foundation is a non-profit organization
based in Boulder, CO. By design, the Foundation is
separate from the FreeBSD Project. When the Foun-
dation was created, it was not clear that a non-profit
supporting open source development was a viable con-
cept. As such, it was important to the founders that the
Foundation be a separate legal entity that would sup-
port the Project, but that the Project not be dependent
on the long-term viability of a Foundation. It was also
important to the founders of the Foundation that there
be a differentiation between the people managing the
monetary, legal, and administrative matters and those
administering the software development work in the
project. In practice, the Foundation has proved finan-
cially and administratively successful, and plays an im-
portant role in supporting the daily operation and long
term success of the Project.

The FreeBSD Foundation is responsible for a broad
range of activities including contract development (es-
pecially relating to Java), managing of intellectual
property, acting as a legal entity for contractual agree-
ments (including non-disclosure agreements, software
licensing, etc), providing legal support for licensing
and intellectual property issues, fund-raising, event
sponsorship (including BSDCan, EuroBSDCon, Asi-
aBSDCon, and several FreeBSD developer summits a
year), providing travel support for FreeBSD developers
and advocates, negotiating collaborative R&D agree-
ments, and more.

The FreeBSD Foundation is currently managed by
a board of directors, and has one part-time employee
who is responsible for day-to-day operation of the
Foundation as well as sitting on the board. The board
also consists of four volunteer members drawn from
the FreeBSD developer community. The FreeBSD
Foundation Board is in regular communication with

other administrative bodies in the FreeBSD Project, in-
cluding the FreeBSD Core Team.

The FreeBSD Foundation is entirely supported by
donations, and needs your help to continue its work!

6 What We Produce and Consume

The FreeBSD Project produces a great deal of code:
the FreeBSD kernel, user space, and the Ports Collec-
tion. But the FreeBSD Project does not produce “just
source code”. FreeBSD is a complete software prod-
uct, consisting of software, distribution, documenta-
tion, and support:

• FreeBSD kernel, user space

• Ports collection, binary package builds

• FreeBSD releases

• FreeBSD manual pages, handbook, web pages,
marketing material

• Architecture and engineering designs, papers, re-
ports, etc

• Technical support, including answering questions
and debugging problems

• Involvement in and organization of a variety of
FreeBSD user events

This would not be possible without support of a
larger community of users and consumers, who pro-
vide certain necessary commodities:

• Beer, wine, soda, chocolate, tea, and other
food/beverage-related vices in significant quan-
tity.

• Donated and sponsored hardware, especially in
racks at co-location centers, with hands to help
manage it.

• Bandwidth in vast and untold quantities.

• Travel grants, developer salaries, contracts, devel-
opment grants, conference sponsorship, organiza-
tion membership fees, etc.

• Thanks, user testimonials and appreciation, good
press.

• Yet more bandwidth.

None of these has a trivial cost–by far the most im-
portant resource for the project is developer time, both
volunteered and sponsored.



7 Who are the Developers?

FreeBSD developers are a diverse team, made up of
members from 34 countries on six continents. They
vary in age between 17 and 58, with a mean age of
32 and median age of 30; the standard deviation is
7.2 years. FreeBSD developers include professional
systems programmers, university professors, contrac-
tors and consultants, students, hobbyists, and more.
Some work on FreeBSD in a few spare hours in the
evening once a week–others work on FreeBSD full
time, both in and out of the office. FreeBSD develop-
ers are united by common goals of thoroughness and
quality of work. Unlike many open source projects,
FreeBSD can legitimately claim to have developers
who have worked on the source base for over thirty
years, a remarkable longevity that would be the envy
of many software companies. This diversity of expe-
rience contributes to the success of FreeBSD, com-
bining the pragmatic “real world problem” focus of
consumers building products with the expertise of re-
searchers working on the cutting edges of computer
science research.

Figure 1: Age Distribution of FreeBSD Developers
(2005)

8 FreeBSD Processes

The FreeBSD Project is successful in significant part
because it encapsulates not just many experienced and
highly competent individuals, but also because it has
a set of well-defined development processes and prac-
tices that are universally accepted and self-sustaining.

• Committer life cycle and commit bits - The pro-
cess by which new developers are inducted into
the community and mentored as new members of
the community is well-defined and successful.

• Core Team - Project leadership is selected and re-
newed via regular elections from the developer

team as a whole, insuring both continuity, contin-
ued engagement, and fresh voices lead the project
over time.

• Mailing lists - Through extensive and courteous
use of mailing lists for almost all project commu-
nications over many years, consensus is almost
universal in project decision making, and there
is relatively little “stepping on toes” for a project
that spans dozens of countries and time zones.

• Web pages and documentation - A well-designed
and extremely complete set of web pages and
documentation provide access to both the current
condition and history of the project, from tutorial
content for new users to detailed architectural in-
formation on the design of the kernel.

• Groups/projects - A hallmark of FreeBSD’s suc-
cess is the scalable community model, which
combines the best of centralized software devel-
opment with project-oriented development, al-
lowing long-term spin-off projects to flourish
while maintaining close ties and involvement in
the central project.

• Events - The FreeBSD Project exists primarily
through electronic communication and collabo-
ration, but also through in-person developer and
user events occurring continuously throughout the
year. These include developer summits and in-
volvement in both BSD-specific and general pur-
pose conferences.

• Honed development and release cycle - With over
ten years of online development and release en-
gineering experience, the FreeBSD Project has
pioneered many online development practices,
combining professional software engineering ap-
proaches with pragmatic approaches to volunteer-
driven open source development. One of the key
elements of this approach is effective and highly
integrated use of software development tools and
revision control, including the use of multiple re-
vision control systems, CVS and Perforce.

• Centralized computing resources - Also key to
the success of the project has been the use of
several globally distributed but centrally managed
computing clusters, organized and maintained by
project donors and a highly experienced system
administration team. The FreeBSD.org infras-
tructure ”just works”, providing flawless support
for the daily activities of the project.

• Conflict resolution - In any development project,
but especially in widely distributed organizations,
effective management of technical disagreements
and conflicts is critical; the FreeBSD Project’s
history is full of examples of successful conflict
resolution leading to both good technical and so-
cial outcomes.



8.1 FreeBSD Committers

A FreeBSD committer is, in the most literal sense,
someone who has access to commit directly to the
FreeBSD CVS repository. Committers are selected
based on four characteristics: their technical expertise,
their history of contribution to the FreeBSD Project,
their clear ability to work well in the FreeBSD com-
munity, and their having made the previous three ex-
tremely obvious. Key to the induction of new com-
mitters is the notion of a mentor: this is an existing
committer who has worked with the candidate over an
extended period and is willing to both sponsor their
candidacy and also act in a formal role in introducing
them to the project. The mentor proposes the candi-
date to one of the Core Team, Port Manager, or Do-
ceng, who respectively approve commit rights for the
src tree, the ports tree, or the documentation tree. A
typical proposal includes a personal introduction of the
candidate, a history of their background and contribu-
tion, and volunteers to mentor them.

Once approved, typically by a vote, the new commit-
ter is given access to the FreeBSD.org cluster and au-
thorized access to CVS. Mentorship does not end with
the proposal: the mentor and new committer will have
a formal ongoing relationship for several months, in
which the mentor works with the new committer to re-
view and approve all commits they will make, helps
them circumnavigate the technical and social structure
of the project. This relationship often continues infor-
mally in the long term, beyond the point where the
mentor has “released” the new committer from men-
torship. Typically, there is significant technical inter-
est overlap between the proposing mentor and the new
committer, as this will be the foundation on which fa-
miliarity with their work, as well as competence to re-
view their work, will have been formed.

Figure 2: Number of FreeBSD committers by commit
bit type (2005)

Committers often begin working in one of the var-
ious trees, and gradually spread to working in others.
For example, it is not uncommon for documentation

committers to expand the scope of their work to in-
clude source development, or for src developers to also
maintain a set of application ports. Some of FreeBSD’s
most prolific and influential kernel developers have be-
gun life writing man pages; “upgrading” a commit bit
to allow access to new portions of the tree is a formal
but lightweight process, in which a further proposal by
a potential mentor is sent to the appropriate team for
approval. As with an entirely new committer, a formal
mentorship will take place, in which the new mentor
takes responsibility for reviewing their commits dur-
ing their earlier work with their new commit bit.

Figure 3: There is significant overlap, with many com-
mitters working in more than one area of the source
tree. (2005)

8.2 FreeBSD Core Team
The FreeBSD Core Team is the nine-member elected
management body of the FreeBSD Project, and is re-
sponsible for a variety of administrative activities. His-
torically, the Core Team consisted of a self-selected set
of the leading developers working on FreeBSD; how-
ever, in 2000, the model was changed to an elected
model in order to adopt a more sustainable model.
Every two years, nominees from the FreeBSD com-
mitter team volunteer to be placed on the role, and a
one month online election is held. The FreeBSD Core
Team then appeals for and selects a volunteer to act as
Core Secretary.

While the process of selecting the Core Team is
well-defined, the precise responsibilities of the Core
Team are not, and have evolved over time. Some ac-
tivities are administrative in nature: organizing succes-
sive elections, assisting in writing and approving char-
ters for specific teams, and approving new FreeBSD
committers. Other activities are more strategic in na-
ture: helping to coordinate developer activity, mak-
ing sure that key areas are being worked in by cajol-
ing or otherwise convincing developers they are im-
portant, and assigning authority to make significant
(possibly contentious) architectural decisions. Finally,



the FreeBSD Core Team is responsible for maintaining
and enforcing project rules, as well conflict resolution
in the event that there is a serious disagreement among
developers.

8.3 Ports Committers, Maintainers

The FreeBSD Ports Collection is one of the most ac-
tive areas of FreeBSD work. At its heart, the ports
tree is a framework for the systematic adaptation of
third party applications to FreeBSD, as well as a vast
collection of ported applications. In 2005, there were
158 ports committers working on 16,000 application
ports. In addition to ports committers, the notion of a
ports maintainer is also important: while ports commit-
ters are often involved in maintaining dozens or even
hundreds of ports themselves, they also work to fun-
nel third party porting work by over 1,500 ports main-
tainers into the ports tree. Particularly prolific main-
tainers often make good candidates for ports commit
bits. With an average of 100 ports per committer and
11 ports per maintainer, the ports work is critical to the
success of FreeBSD.

The Port Manager (portmgr) team is responsible
for administration of the ports tree, including approv-
ing new ports committers as well as administering
the ports infrastructure itself. This involves regres-
sion testing and maintaining the ports infrastructure,
release engineering and building of binary packages
across half a dozen hardware platforms for inclusion
in FreeBSD releases, as well as significant develop-
ment work on the ports infrastructure itself. Regres-
sion testing is a significant task, involving large clus-
ters of build systems operating in parallel; even minor
infrastructure changes require the rebuilding of tens of
thousands of software packages.

8.4 Groups and Sub-Projects

The FreeBSD Project is a heavily structured and siz-
able organization with many special interest groups
working in particular areas. These groups focus on
specific technical areas, support, advocacy, deploy-
ment and support of FreeBSD in various languages
and in different countries. Some sub-groups are for-
mally defined by the project, and in some cases,
have approved charters and membership. Others exist
more informally, or entirely independent of the central
FreeBSD.org infrastructure, shipping derived software
products.

8.5 A FreeBSD Project Org Chart

While the concept of an organizational chart applies
somewhat less well to a loose-knit volunteer organiza-
tion than a traditional company, it can still be instruc-
tive.

Figure 4: Lines in this FreeBSD Project Org chart rep-
resent more than just downward delegation of authority
found in commercial organizations.

In a traditional organization chart, arrows would rep-
resent delegation of responsibility. In the FreeBSD
Project organization chart, this is only partially true:
typically arrows represent delegation of authority: i.e.,
the FreeBSD Core Team, the elected management
body of the project has assigned authority, by means of
voting to approve a written chart, for security advisory
and other Security Officer activities to the Security Of-
ficer and Security Officer team. As the organization is
volunteer-driven, delegation of of responsibility occurs
up as much as down: the larger body of FreeBSD com-
mitters select a Core Team to take responsibility for a
variety of administrative activities.

8.6 Derived Open Source Projects

FreeBSD provides components, and in some cases the
foundation, of a large number of derived open source
software projects.

• FreeSBIE, a FreeBSD-based live CD image

• m0n0wall, an embedded FreeBSD-based firewall
package

• pfSense, an extensible firewall package based on
m0n0wall

• PC-BSD, a workstation operating system based
on FreeBSD

• Darwin, the open source foundation of the Mac
OS X operating system, which includes both por-
tions of the FreeBSD kernel and user space

• DesktopBSD, a workstation operating system
based on FreeBSD

• DragonflyBSD, a FreeBSD-derived research op-
erating system project



• FreeNAS, a FreeBSD-based network storage ap-
pliance project

In addition, FreeBSD code may be found in an
even greater number of projects that software compo-
nents developed in FreeBSD; this includes open source
projects such as OpenBSD, NetBSD, and Linux sys-
tems.

8.7 Mailing Lists
Mailing lists are the life-blood of the project, and the
forum in which almost all project business takes place.
This provides a long term archive of project activi-
ties. There are over 40 public mailing lists hosted at
FreeBSD.org, as well as a number of private mailing
lists associated with various teams, such as the Core
Team, Release Engineering team, and Port Manager
team. Mailing lists serve both the developer and user
communities. A great many other mailing lists relating
to FreeBSD are hosted by other organizations and in-
dividuals, including regional user groups, and external
or derived projects.

8.8 FreeBSD Web Pages
Web sites are a primary mechanism by which the
FreeBSD Project communicates both internally and
with the world at large. The main FreeBSD.org web
site acts as a distribution point for both FreeBSD as
software and documentation, but also as a central point
for advocacy materials. Associated web sites for the
mailing lists and mailing list archives, bug report sys-
tem, CVSweb, Perforce, and many other supporting
services are also hosted as part of the FreeBSD.org
web site.

Figure 5: Web sites play an integral role in how the
FreeBSD Project communicates with both users and
contributors.

In addition, there are a number of project-specific
web sites for FreeSBIE, TrustedBSD, PC-BSD, Desk-
topBSD, and others, which are linked from the main

FreeBSD.org web site, but are separately authored and
hosted.

8.9 Events
While electronic communications are used as the pri-
mary method of communication for most on-going
work, there is no substitute for meeting people you
are working with in-person. The FreeBSD Project has
a presence at a great many technical workshops and
conferences, such as USENIX and LinuxWorld, not to
mention a highly successful series of BSD-related con-
ferences, such as BSDCan, EuroBSDCon, AsiaBSD-
Con, NYCBSDCon, MeetBSD, and a constant stream
of local user group and developer events.

As these conferences bring together a great many
FreeBSD developers, there are often Developer Sum-
mits occurring concurrently, in which FreeBSD devel-
opers meet to present, discuss, hack, and socialize.
Summits typically consist of a formal session contain-
ing both presentations and moderated discussion, and
information activities, such as hacking and gathering
at a bar or pub.

8.10 FreeBSD Development Cycle
FreeBSD is created using a heavily branched develop-
ment model; in revision control parlance, this means
that there is a high level of concurrent work occurring
independently. The central FreeBSD src CVS reposi-
tory contains a large number of branches; the main of
these is the HEAD or CURRENT branch, where new
features are aggressively developed.

Figure 6: Branching is a key element of the FreeBSD
development model: simultaneous work on several
complete versions of FreeBSD at once allows changes
to be merged from one branch to another as they gain
stability, exposing them to successively wider testing
and use.

A series of STABLE branches contains more conser-
vative development, one per major release series, with
changes being trickled from the CURRENT branch to



other branches as they stabilize; this process is referred
to as “Merged From Current”, or MFC. Minor releases
are cut from STABLE branches at regular intervals,
typically three to six months. Major releases are cut
around every 18 months, although sometimes less fre-
quently, and involve the creation of a new STABLE
branch; this allows extremely large features, inappro-
priate for merge to a STABLE release series, to be re-
leased as part of new major (.0) releases.

In addition to the CURRENT and STABLE
branches, RELEASE branches are used for release cy-
cles as well as for security and errata patches following
release.

7-current cutting edge development
6-stable active development with releases
5-stable legacy branch with releases
4-stable legacy branch

Branched development is also used extensively dur-
ing early feature development. Due to limitations in
CVS, discussed later, this work typically occurs in
branches in the FreeBSD Perforce server.

8.11 FreeBSD Releases
Release engineering is one of the most tricky aspects
of running any large software project, let alone a large-
scale, volunteer-run open source project. The release
team (RE) is responsible for the coordinating the com-
bination of technical and technical engineering nec-
essary to bring a FreeBSD release to fruition. With
membership approved by the Core Team, RE is given
significant leeway to steer the FreeBSD development
process, including placing administrative limits on de-
velopment in the tree (code slushes, freezes), perform-
ing CVS branching and tagging operations, not to men-
tioning begging and cajoling developers into doing that
which is necessary to make a release possible.

As FreeBSD development is centered on revision
control, the revision control operations involved in a
release are important to understanding how releases
occur. Releases occur in release branches, which
are typically branched from a -STABLE development
branch. In preparation for a release, development on
the -STABLE branch is slowed to a more conserva-
tive set of changes in order that existing new work can
stabilize. First a “code slush” occurs, in which new
features are eschewed, but bug fixing and refinement
occurs largely unhindered; any significant changes for
the release require approval by the Release Engineer-
ing team during this period. After a period of slush, a
“code freeze” is started, after which point commits to
the tree may only occur with the specific approval of
the release am. This change in process increases the
level of review taking place for changes, as well as al-
lowing the Release Engineering team to manage risk
for the release as a whole.

A series of beta test releases will be made during
the code freeze, in which major and minor problems

are incrementally identified and corrected. Once the
Release Engineering team is satisfied with the quality
of the tree, branching of the release branch may oc-
cur, which can allow more active development on the
-STABLE branch to resume. A series of release candi-
dates is used to continue to refine the release, with suc-
cessively more broad testing, especially of the install
procedure, which sees less exposure during normal de-
velopment. Once a final release candidate is created,
the release itself may occur, and the release is tagged.

Coordinated with this process for the base tree is
both a release process for the ports and documenta-
tion trees. Final third party package builds occur prior
to the release candidate series, ensuring testing and
compatibility after significant changes have been com-
pleted in the base source tree. The Port Manager team
also places a slush and freeze on the ports tree, al-
lowing testing of the packages together rather than in
isolation. The documentation tree is likewise tagged
as part of the release process; an important aspect of
the release is preparation of the release documenta-
tion, including the release notes identifying changes in
FreeBSD, finalization of translated versions, and up-
dates to the web site and documentation to reflect the
release.

The release branches continue to serve an important
role after the tagging and release of a FreeBSD ver-
sion. Once the Release Engineering team believes that
there is no risk of a re-roll of the release due to a last
minute issue, it will transfer ownership of the branch
to the Security Officer team, which will then maintain
security patches against the release in that branch. The
Release Engineering team may also coordinate the ad-
dition of errata patches to the branch for major stabil-
ity or functional problems identified after the release.
Freezes requiring approval of the Release Engineering
or Security Officer teams are not released on release
branches.

The FreeBSD 6.1 release process is fairly represen-
tative, in that it contained the typical snags and delays,
but produced a very technically successful and widely
deployed release:

25 Jan 2006 Schedule finalized
31 Jan 2006 Code freeze begins
5 Feb 2006 Ports schedule, announced
5 Feb 2006 6.1-BETA1
19 Feb 2006 6.1-BETA2
23 Feb 2006 Ports tree frozen
3 Mar 2006 6.1-BETA3
6 Mar 2006 Doc tree slush

14 Mar 2006 6.1-BETA4; ports tagged
5 Apr 2006 RELENG 6 1 branch
10 Apr 2006 6.1-RC1
17 Apr 2006 Doc tree tagged, unfrozen
2 May 2006 6.1-RC2
7 May 2006 Release tagged
7 May 2006 Build release
8 May 2006 6.1-RELEASE released



Major (.0) releases occur in a similar manner to mi-
nor releases, with the added complexity of creating a
new -STABLE branch as well as a new release branch.
As this occurs quite infrequently, often as much as
several years apart, the process is more variable and
subject to the specific circumstances of the release.
Typically, the new -STABLE branch is created after
a long period of code slush and stabilization in the -
CURRENT branch, and occurs well in advance of the
formal release process for the .0 release. Critical issues
in this process include the finalization of application
binary interfaces (ABIs) and APIs for the new branch,
as many ABIs may not be changed in a particular re-
lease line. This includes library version updates, kernel
ABI stabilization for device drivers, and more.

Incremental releases of FreeBSD, such as the 6.1
and 6.2 releases, largely require appropriately conser-
vative strategies for merging changes from the CUR-
RENT branch, along with some amount of persuasion
of developers to address critical but less technically in-
teresting issues. Typical examples of such issues are
device driver compatibility issues, which tend to rear
their heads during the release process as a result of
more broad testing, and a few individuals bravely step
in to fix these problems.

Larger releases, such as 3.0, 4.0, 5.0, and 6.0, re-
quire much more care, as they typically culminate sev-
eral years of feature development. These have been
handled with varying degrees of success, with the
most frequent source of problems the tendency to over-
reach. While the FreeBSD 4.0 and 6.0 releases were
largely refinements and optimizations of existing ar-
chitecture, the FreeBSD 3.0 and 5.0 releases both in-
corporated significant and destabilizing architectural
changes. Both resulted in a series of incremental re-
leases on a STABLE branch that did not meet the ex-
pectations of FreeBSD developers; while these prob-
lems were later ironed out, they often resulted from a
“piling on” of new features during an aggressive CUR-
RENT development phase.

The success of the FreeBSD 6.x release series has
been in large part a result of a more moderated devel-
opment and merge approach, facilitated by the heavy
use of Perforce, which allows experimental features
to be maintained and collaborated on without merg-
ing them to the CVS HEAD before they are ready.
Prior to the use of Perforce, experimental features were
necessarily merged earlier, as there were not tools to
maintain them independently, which would result in
extended periods of instability as the base tree ceased
to be a stable platform for development. The more ma-
ture development model leaves the CVS HEAD in a
much more stable state by allowing a better managed
introduction of new features, and actually accelerates
the pace of development by allowing avoiding slow-
downs in concurrent development due to an unstable
base.

8.12 Revision Control

Most major technical activities in the project are cen-
tered on revision control. This includes the develop-
ment of the FreeBSD source code itself, maintenance
of the tends of thousands of ports makefiles and meta-
data files, the FreeBSD web site and documentation
trees (including the FreeBSD Handbook), as well as
dozens of large-scale on-going projects. Historically,
FreeBSD has depended heavily on CVS, but has both
extended it (via cvsup), and made extensive use of Per-
force as the project has grown. The FreeBSD Project is
now actively exploring future revision control options.

8.12.1 Revision Control: CVS

CVS, or the Concurrent Versions System, is the pri-
mary revision control system used by the FreeBSD
Project, and holds the authoritative FreeBSD source
trees, releases, etc. [2] This repository has over twelve
years of repository history. The FreeBSD CVS reposi-
tory server, repoman.FreeBSD.org, actually holds four
separate CVS repositories:

/home/ncvs FreeBSD src
/home/pcvs FreeBSD ports
/home/dcvs FreeBSD documentation

/home/projcvs FreeBSD project

The FreeBSD Project supplements CVS in a vari-
ety of ways; the most important is cvsup, which allows
high-speed mirroring and synchronization of both the
CVS repository itself, as well as allowing CVS check-
outs without use of the heavier weight CVS remote ac-
cess protocol. This permits the widespread distribution
of FreeBSD, as well as avoiding concurrent access to
the base repository, which with CVS can result in a
high server load. Most developers work against local
CVS repository mirrors, only using the central reposi-
tory for check-in operations.

Over time, the technical limitations of CVS have be-
come more apparent; cvsup significantly enhances the
scalability of CVS, but other limits, such as the lack
of efficient branching, tagging, and merging operations
have become more of an issue over time.

8.12.2 Revision Control: Perforce

While CVS has served the project extremely well, its
age is showing. CVS fails to offer many key features
of a distributed version control system, nor the nec-
essary scalability with respect to highly parallel de-
velopment. To address these problems, the FreeBSD
Project has deployed a Perforce server, which hosts
a broad range of on-going “projects” derived from
the base source tree. [6] The most important feature
that Perforce brings to the FreeBSD Project is support
for highly branched development: it makes creating
and maintaining large-scale works in progress possible



through lightweight branching and excellent history-
based merging of changes from parent branches to
children.

Currently, most major new kernel development work
is taking place in Perforce, allowing these projects to
be merged to the base tree as they become more ma-
ture, avoiding high levels of instability in the CUR-
RENT branch. Perforce also makes collaboration
between developers much easier, allowing develop-
ers to monitor each other’s works in progress, check
them out, test them, and modify them. Projects that
have been or are being developed in Perforce include
SMPng, KSE, TrustedBSD Audit, TrustedBSD MAC,
SEBSD, superpages, uart, ARM, summer of code,
dtrace, Xen, sun4v, GEOM modules, CAM locking,
netperf, USB, ZFS, gjournal, and many others. CVS
remains the primary and authoritative revision control
system of the FreeBSD Project, with Perforce being re-
served for works in progress, but it plays a vital role in
the growth of the project, so cannot be ignored in any
serious consideration of how the project operates.

8.12.3 Revision Control: The Future

The FreeBSD Project is in the throes of evaluating po-
tential future distributed version control systems as a
potential successor to CVS and Perforce, with the goal
of subsuming all activity from both into a single repos-
itory. The Project’s requirements are complicated, both
in terms of basic technical requirements, as well as
being able to support our development processes and
practices. Primary of these requirements is that the en-
tire current CVS repository and history be imported
into the new repository system, a task of non-trivial
complexity, and that it support the new branched de-
velopment model used heavily in Perforce. Another
important consideration is continued support for the
cvsup infrastructure for the foreseeable future.

8.13 Clusters
The FreeBSD Project makes use of several clusters
scattered around the world, typically located at co-
location centers. These clusters are possible due to
the generous donations of companies using FreeBSD.
One of the most important aspects of these donations is
that they are not just significant donations of servers or
rack space, but donations of administrative staff time
and expertise, including hands to rearrange and handle
new and failing hardware, reinstall and update systems,
and help troubleshoot network and system problems at
bizarre hours of the day and night.

8.13.1 FreeBSD.org cluster

While there are several FreeBSD Project clusters, The
FreeBSD.org Cluster is hosted in Santa Clara by Ya-
hoo!, and is home of many of the most critical systems
making up the FreeBSD.org domain.

Mail servers hub, mx1, mx2
Distribution ftp-master, www
Shell access freefall, builder

Revision control repoman, spit, ncvsup
Ports cluster pointyhat, gohans, blades

Reference systems sledge, pluto, panther, beast
Name server ns0
NetApp filer dumpster

All of these systems have been made available
through the generous donations of companies support-
ing FreeBSD, such as Yahoo!, NetApp, and HP. The
systems are supported by remote power, serial con-
soles, and network switches.

8.13.2 Other Clusters

The FreeBSD.org cluster hosted at Yahoo! is not
the only concentration of FreeBSD Project servers.
Three other major clusters of systems are used by the
FreeBSD Project:

• The Korean ports cluster hosted by Yahoo! in Ko-
rea provides a test-bed for ports work.

• allbsd.org in Japan provides access to many-
processor Sun hardware for stress and perfor-
mance testing.

• The Sentex cluster hosts both the FreeBSD Se-
curity Officer build systems, as well as the Net-
perf cluster, a network performance testing clus-
ter consisting of a dozen network booted systems
with gigabit networking. This cluster has also
been used to test dtrace, hwpmc, and ZFS.

• The ISC cluster hosts half of FreeBSD.org, as
well as a large number of ports building systems,
the FreeBSD.org Coverity server, test systems,
and more.

8.14 Conflict Resolution
Conflict resolution is a challenging issue for all orga-
nizations, but it is especially tricky for volunteer orga-
nizations. FreeBSD developers are generally charac-
terized by independence, a good sense of cooperation,
and common sense. This is no accident, as the com-
munity is self-selecting, and primary criteria in eval-
uating candidates to join the developer team are not
just technical skills and technical contribution, but also
the candidate’s ability to work successful as part of a
larger global development team. Conflict is success-
fully avoided by a number of means, not least avoiding
unnecessary overlap in work areas and extensive com-
munication during projects that touch common code.

Despite this, conflicts can and do arise: some con-
sist purely of technical disagreements, but others result
from a combination of the independence of spirit of
FreeBSD developers and the difficulty of using solely



online communications to build consensus. Most con-
flicts are informal and self-resolving; on the rare oc-
casion where this is not the case, the FreeBSD Core
Team is generally responsible for mediating the con-
flict. For purely technical disagreements, reaching a
decision by careful consideration (and fiat) is often
successful, relying on the elected authority of the Core
Team to make a final decision. As technical disagree-
ments are often only the trigger in more serious con-
flicts, the Core Team typically selects a mediator (usu-
ally a Core Team member) to help work to improve
communications between the disagreeing parties, not
just pick a “right” technical solution.

8.15 Bike sheds
“Bike sheds” are a very special kind of conflict found,
most frequently, in technical communities. First de-
scribed by Parkinson in a book on management, the
heart of the issue of the bike shed lies in the observa-
tion that, for any major engineering task, such as the
designing of a nuclear power plant, the level of exper-
tise and investment necessary to become involved is
so significant that most contributions are productive;
however, the building of a bike shed is something that
anyone (and everyone) can, and will, express an opin-
ion on. [5] Strong opinions prove easiest to have on
the most trivial details of the most unimportant topics;
recognizing this problem is key to addressing it. Bike
sheds, while not unique to FreeBSD, are an art-form
honed to perfection by the project. Since they have be-
come better understood, they have become much easier
to ignore (or dismiss once they happen). This terminol-
ogy has now been widely adopted by many other open
source projects, including Perl and Subversion.

9 Conclusion

The FreeBSD Project is one of the largest, oldest, and
most successful open source projects. Key to the idea
of FreeBSD is not just software, but a vibrant and ac-
tive online community of developers, advocates, and
users who cooperate to build and support the system.
Several hundred committers and thousands of contrib-
utors create and maintain literally millions of lines of
code in use on tens of millions of computer systems.
None of this would be possible without the highly
successful community model that allows the FreeBSD
Project to grow over time, as well as permitting other
projects to build on FreeBSD as a foundation.

References
[1] DINH-TRONG, T. T., AND BIEMAN, J. M. The FreeBSD

Project: A Replication Case Study of Open Source Develop-
ment. IEEE Transactions on Software Engineering 31, 6 (2005).

[2] FREE SOFTWARE FOUNDATION. cvs - Concurrent Versions
System.
http://www.nongnu.org/cvs/.

[3] FREEBSD PROJECT. FreeBSD Project home page.
http://www.FreeBSD.org/.

[4] JORGENSEN, N. Putting it all in the trunk: incremental software
development in the FreeBSD open source project. Information
Systems Journal 11, 4 (2001), 321–336.

[5] PARKINSON, C. N. Parkinson’s Law; or, the Pursuit of
progress. John Murray.

[6] PERFORCE SOFTWARE. Perforce, the Fast Software Configura-
tion Management System.
http://www.perforce.com/.

[7] RICHARDS, P. eXtreme Programming: FreeBSD a case study.
In UKUUG Spring Conference and Tutorials: Conference Pro-
ceedings (2006), UKUUG.


