
Update on the SMP 
Network Stack

Robert N. M. Watson
FreeBSD Foundation - University of Cambridge

17 November 2008
FreeBSD Developer Summit - MeetBSD



Agenda

• Reminder: the SMP network stack project?

• Some recent accomplishments

• Some works-in-progress

• Some things that need to happen

• Modifying the socket API

2



SMP Network Stack

• Apply SMPng principles to network stack

• Allow and encourage parallelism

• Millions of LoC, hundreds of subsystems

• Able to disable Giant in 5.3; default in 5.4

• Non-driver use of Giant eliminated by 7.0

3



The last few years...

• Performance optimization and cleanup

• From mutexes to rwlocks/rmlocks on 
inpcbs and inpcbinfos: fully parallel UDP/
UNIX domain sockets

• Move to direct dispatch

• Datagram socket optimizations

• Multi-queue input

4



Works-in-progress

• Further read-locking of global structures

• Multi-queue output

• More formal notions of affinity

• Hashing and replication of global structures

• New socket semantics to support load 
balancing for UDP receive and accept

5



Works-in-progress (2)

• Mbuf + cluster rethink

• Significant scheduler improvements

• Route flow cache

6



Things that want
to be done

• Improve routing table scalability

• Rethink ifnet dispatch abstractions

• NUMA awareness in the VM system

• Revisit cache miss analysis of stack

• Revisit path-centric lock analysis of stack

7



The socket API and 
parallelism

• Some OS services imply synchronization

• Socket queues represent an ordering of 
packets/connections as required by APIs

• API guarantees can be stronger than 
application requirements

• So: cut corners on APIs, or change APIs?

8



Case study:
UDP recv()

• UDP socket buffer maintains wire ordering 
of datagrams matched by binding

• Services often require flow ordering (IP/
port tuple) maintained by modern routers

• DNS/memcached support weaker orders

• Can we improve parallelism by weakening 
guarantees of socket buffer?

9



Proposal: subset binding 
socket option

• UDP sockets can have same binding today

• New socket option will allow colliding 
sockets to request different traffic subsets

• Application declares total number and 
instance using socket option (Borg 3 of 8)

• Kernel will maintain at least 4-tuple 
ordering, but no specific mapping guarantee

10



Related concepts

• Mapping to specific socket could simply be 
a hash on the tuple mod socket count

• Mapping could also be based on effective 
flow affinity to a specific queue or CPU

• Similar concerns exist with TCP accept: 
avoid contention on specific listen socket, 
and return sockets with locality to worker

11



Conclusion

• Focus remains on:

• Locking and scheduling infrastructure

• Locking granularity and contention

• Improving opportunities for parallelism

• Going forward: increasingly optimal 
behavior for current semantics, how can we 
change semantics to improve performance?

12


